Spatial autoregressive and moving average Hilbertian processes
نویسندگان
چکیده
منابع مشابه
Conditional Autoregressive Hilbertian processes
When considering the problem of forecasting a continuous-time stochastic process over an entire time-interval in terms of its recent past, the notion of Autoregressive Hilbert space processes (arh) arises. This model can be seen as a generalization of the classical autoregressive processes to Hilbert space valued random variables. Its estimation presents several challenges that were addressed b...
متن کاملChapter 3: Autoregressive and moving average processes
2 Moving average models Definition. The moving average model of order q, or MA(q), is defined to be Xt = t + θ1 t−1 + θ2 t−2 + · · ·+ θq t−q, where t i.i.d. ∼ N(0, σ). Remarks: 1. Without loss of generality, we assume the mean of the process to be zero. 2. Here θ1, . . . , θq (θq 6= 0) are the parameters of the model. 3. Sometimes it suffices to assume that t ∼WN(0, σ). Here we assume normality...
متن کاملDissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes
This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...
متن کاملOn continuous-time autoregressive fractionally integrated moving average processes
In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...
متن کاملBayesian analysis of autoregressive moving average processes with unknown orders
A Bayesian model selection for modelling a time series by an autoregressive–moving–average model (ARMA) is presented. The posterior distribution of unknown parameters and the selected orders are obtained by the Markov chain Monte Carlo (MCMC) method. An MCMC algorithm that represents the parameters of the model as a point process has been implemented. The method is illustrated on simulated seri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2011
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2010.09.005